If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-23=0
a = 5; b = 4; c = -23;
Δ = b2-4ac
Δ = 42-4·5·(-23)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{119}}{2*5}=\frac{-4-2\sqrt{119}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{119}}{2*5}=\frac{-4+2\sqrt{119}}{10} $
| 4x-5*2x=24 | | -5(3x-4)=-26+8x | | /3b=51 | | -5)–6e=37 | | /(-5)–6e=37 | | 64x2-116x+30=0 | | 6x2-116x+30=0 | | 81x2-102x+30=0 | | |2p-6|=7 | | 4x+2=10x–1 | | (|3k-9|)÷√10=3(√5)÷√2 | | 6(3*u+1)/5)-1/2=7/10 | | |3k-9|=15 | | 4(2*u+1)=7*u-17 | | 2x^2-42x-1080=0 | | 17+3a=50 | | 6(3u+1)/5-1/2=7/10 | | 2z–9=27 | | /12+y=3 | | 5(x+7)=25+x+7 | | 14x=200+10x | | 2x-4(x-4)=-8+4x-24 | | (2z-3)=7z-17 | | (2/3)x-(3/2)x=x/4-13/12 | | 3=5/6u | | 5(x+7)=25+x+x+7 | | 2x+4=14 | | 260=18-u | | 15w=21+8w | | 3+4(2x+3)=31 | | 5(x+7)=25+(x+7) | | 13u-17u=12 |